Clothes Simulation using Sequential and Parallel processing
CSCI8205/EE8367—Parallel Machine Organization
(Spring 2023)
By: Ace Kaung

Abstract

This paper presents a study on the performance analysis of cloth simulation using parallel
programming and different decomposition methods. The goal of the study is to identify the best
approach to achieve optimal performance on three different sizes of clothes with varying
qualities. Three types of clothes were used in the study, including a small cloth with a dimension
of 100x100, a medium cloth with a dimension of 200x200, and a large cloth with a dimension of
300x300. The decomposition methods used in the study included row, column, and block
decomposition. The performance of each method was evaluated using different numbers of
threads. The results of the study show that the row decomposition method consistently performs
well across all three sizes of clothes, while the performance of the column and block
decomposition methods varies depending on the size of the cloth and the number of threads used.
Whereas the normal sequential method produces the lowest performance among all four
methods. The findings suggest that parallel programming with appropriate decomposition
methods and thread configurations can greatly improve the performance of cloth simulation.

Introduction

Cloth simulation is an important application in computer graphics and animation. The
simulation involves modeling the physical properties of cloth, such as texture, flexibility, and
smoothness, to create realistic animations. However, the simulation is computationally intensive
and requires significant processing power. Parallel computing techniques, such as domain
decomposition, can be used to optimize the performance of cloth simulation. This paper presents
an analysis of the performance of cloth simulation using parallel computing techniques compared
to the normal sequential technique.

Methodology

In order to simulate the behavior of cloth, it is necessary to have a thorough
understanding of its underlying structure. Cloth is composed of interconnected nodes, as shown
in Figure 1.0. Each node is linked to adjacent nodes in the up, down, previous, and next
directions, as appropriate. Next, physics forces must be calculated for each individual node.
These forces include the Hooke's Law force, aerodynamic force, Eulerian integration force, and
collision detection force (Tuur Stuyck, Cloth Simulation for Computer Graphics).

The Hooke's Law and aerodynamic forces are calculated by obtaining the forces of
neighboring nodes and storing them as acceleration values, without updating the nodes
themselves until the Eulerian integration stage. During Eulerian integration, additional forces are
calculated using the data obtained from the Hooke's Law and aerodynamic forces. Only after this
stage are the node positions finally updated. Therefore, the Hooke's Law and aerodynamic forces
can be parallelized together beforehand, while the Eulerian integration stage must be parallelized
separately. Collision detection, on the other hand, can only be calculated after Eulerian
integration has been performed. As such, it must be parallelized separately as well.



Figure 1.0 (Cloth Nodes)

Sequential

The sequential method for cloth simulation involves calculating the forces node by node,
starting from the top left corner and proceeding towards the bottom right node. It calculates the
first row's first column node and proceeds towards the last column of the first row until the end
of the bottom row.

Parallel - Row

The parallel - row method for cloth simulation involves dividing the work into multiple
threads. The first thread will perform the same computation as the sequential method, starting
from the top left corner and proceeding towards the specified row. The second thread will start
computing from where the first thread ends, and it will continue until the next specified row.
Then the rest of the thread will follow the same logic until the end of the cloth.

Parallel - Col

The parallel - col (column) method for cloth simulation also divides the work into
multiple threads. The first thread will start computing from the top left corner and proceed
towards the specified column of the first row, then calculate the next row with the same logic
until the last row. The other thread will start from where the previous thread ends and will
continue computing towards the specified column of the last row.

Parallel - Block

The parallel - block method is a combination of the parallel - row and col methods for
cloth simulation. It divides the work into multiple threads as well, similar to the previous
methods. The first thread will compute the forces node by node, starting from the top left corner
and proceeding towards the specified column of the first row, then calculate the next row until
the specified column and will do this until the specified row. The other thread will start from
where the previous thread ends and continue computing towards the specified row and column.

Samples

Three different types of clothes (figure 2.0) with varying sizes and qualities are used in
this project. The first cloth 1s small, with a dimension of 100x100 and 2500 nodes to build the
cloth. The medium cloth has a dimension of 200x200 and 6400 nodes, while the large cloth has a
dimension of 300x300 and 10,000 nodes in it. In all these three clothes, the stiffness, airflow, and
texture are all the same to make sure that it does not affect the results.



100x100

50x50 80x80

Figure 2.0 (3 different type of cloth samples
with sphere in front of it)

Thread Analysis

The performance of each method is measured using the FPS metric. To determine the
best performance for each cloth size, we first find the optimal number of threads for each
method. This has been done by measuring the FPS of each method in different types of clothes
using different amounts of threads over a period of 10 seconds and taking the average of it to use
as the performance, for this measurement we use it purely just the cloth without any collision to
it. Table 3.0 shows the full details on the performance on different methods using different
numbers of threads.

Small Medium Large
Threads Row Col Block Row Col Block Row Col Block
2 92 91 86 43 40 39 28 28 26
3 99 100 104 49 47 45 33 31 28
5 109 102 111 55 52 46 36 36 30
10 109 105 97 56 54 45 38 36 29
15 99 102 91 55 53 45 35 34 38
20 89 87 74 48 46 44 38 31 38

Table 3.0 (Thread analysis on different methods
for different clothes measured in FPS)

From table 2.0, we can see that for the small cloth, row decomposition performs the best
using 5 or 10 threads with the performance of 109 FPS, while column decomposition performs
the best using 10 threads with the performance of 105, and block decomposition performs the
best using 6 threads with the performance of 111 FPS. For the medium cloth, row decomposition
performs the best using 10 threads with the performance of 56 FPS, column decomposition
performs the best using 10 threads with the performance of 54 FPS, and block decomposition
performs the best using 6 threads with the performance of 46 FPS. For the large cloth, row
decomposition performs the best using 10 or 20 threads with the performance of 38 FPS, column



decomposition performs the best using 5 or 10 threads with the performance of 36 FPS, and
block decomposition performs the best using 15 or 20 threads with the performance of 38 FPS.
These findings of the amount of threads will be used to measure the actual performance for each
clothes along with the sequential method below.

Performance

Using the optimal number of threads that we found above for each method, we compare
the performance of sequential computation with domain decomposition methods (table 4.0). The
results show that sequential computation performs the worst for all three cloth sizes. For the
small cloth, sequential computation performs at 84 FPS, while row decomposition performs at
110 FPS, column decomposition performs at 95 FPS, and block decomposition performs at 104
FPS. For the medium cloth, sequential computation performs at 33 FPS, while row
decomposition performs at 57 FPS, column decomposition performs at 55 FPS, and block
decomposition performs at 57 FPS. For the large cloth, sequential computation performs at 21
FPS, while row decomposition performs at 37 FPS, column decomposition performs at 34 FPS,
and block decomposition performs at 37 FPS.

Small Medium Large

Seque Seque Seque
Seconds ntial | Row | Col |Block | ntial | Row | Col |[Block | ntial | Row | Col | Block

—_

79 102 98 106 34 59 56 58 22 39 38 41

83 109 | 106 | 109 33 56 54 55 21 38 37 40

82 109 | 107 | 108 33 56 54 57 21 37 36 38

85 110 107 | 105 33 57 53 57 21 37 36 38

85 110 94 100 33 56 54 57 21 37 36 38

85 110 88 105 33 57 55 57 21 37 36 36

85 112 88 104 33 57 54 57 21 37 31 34

85 111 87 99 33 57 55 57 21 37 31 34

Ol |IN|o|ja|~]|w]DN

86 112 85 101 33 57 55 57 21 37 31 34

10 85 112 88 101 33 57 55 57 21 37 31 34

Average 84 110 95 104 33 57 55 57 21 37 34 37

Table 4.0 (Performance results on different methods
for different clothes)

Results

From the performance analysis that we have seen above, for the small cloth the row
decomposition produced the best performance by using 10 threads and produced 110 FPS. For
the medium cloth the row and block decomposition came to tie by producing the best
performance with 57 FPS by using 10 threads for row and 6 threads for block. For the large cloth
the row and block decomposition continue to place tie performance results by producing 37 FPS
with 10 threads on row method while 16 threads on block decomposition. From these results, we
found that the sequential performs the worst among all of the provided methods and to get better
results we should be using the parallel domain decomposition.



Conclusion

In conclusion, this study has shown that parallel programming with appropriate
decomposition methods and thread configurations can greatly improve the performance of cloth
simulation. The performance analysis revealed that the row decomposition method consistently
produced the best performance across all three sizes of clothes, while the column and block
decomposition methods varied depending on the size of the cloth and the number of threads
used. Additionally, the normal sequential method produced the lowest performance among all
four methods. These findings suggest that parallel programming techniques can significantly
enhance the performance of cloth simulation, leading to more realistic animations in computer
graphics and animation.



References

Baraff, David, and Andrew Witkin. "Large Steps in Cloth Simulation." Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98), 1998, pp. 43—
54. https://doi.org/10.1145/280814.280821.

Bridson, Robert, Sebastian Marino, and Ronald Fedkiw. "Simulation of Clothing with Folds and
Wrinkles." Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2003, pp. 28-36. https://doi.org/10.2312/SCA/SCA03/028-036.

Stuyck, Tuur. Cloth Simulation for Computer Graphics. Springer International Publishing, 2018.

Volino, Pascal, and Nadia Magnenat-Thalmann. "Implementing Fast Cloth Simulation with Collision
Response." Computer Graphics International, 2000. Proceedings, IEEE, 2000, pp. 257-266.
https://doi.org/10.1109/CGI.2000.852333.

NVIDIA Corporation. CUDA C Programming Guide. NVIDIA, 2013. https://docs.nvidia.com/cuda/cuda-
c-programming-guide/.

OpenMP Architecture Review Board. OpenMP Application Programming Interface Version 5.2.
OpenMP.org, 2023. https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-

2.pdf.

Fang, Shaojie, and Ming C. Lin. "Parallel Simulation of Large-Scale Cloth." ACM SIGGRAPH 2011
Talks, 2011, p. 1. https://doi.org/10.1145/2018436.2018467.

Eberly, David. Game Physics. Morgan Kaufmann, 2003.

Ng, H. W., and R. L. Grimsdale. "Computer Graphics Techniques for Modeling Cloth." /IEEE Computer
Graphics and Applications, vol. 16, no. 5, 1996, pp. 28—41. https://doi.org/10.1109/38.536275.

Provot, Xavier. "Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior."
Proceedings of Graphics Interface, 1995, pp. 147-154.

Lenoir, Jean, and Gilles Debunne. "Efficient Parallel Cloth Simulation on Modern Multicore
Architectures." Journal of Graphics, GPU, and Game Tools, vol. 11, no. 1, 2006, pp. 51-64.
https://doi.org/10.1080/2151237X.2006.10129253.

Choi, Kwang-Jin, and Hyeong-Seok Ko. "Stable but Responsive Cloth." ACM Transactions on Graphics
(TOG), vol. 24, no. 3, 2005, pp. 604—611. https://doi.org/10.1145/1073204.1073241.

Teschner, Matthias, et al. "Collision Detection for Deformable Objects." Computer Graphics Forum, vol.
24, no. 1, 2005, pp. 61-81. https://doi.org/10.1111/].1467-8659.2005.00829.x.

Nguyen, Binh, Ronald Fedkiw, and Henrik Wann Jensen. "Physically Based Modeling and Animation of
Fire." ACM Transactions on Graphics (TOG), vol. 22, no. 3, 2003, pp. 721-728.


https://doi.org/10.1145/280814.280821
https://doi.org/10.2312/SCA/SCA03/028-036
https://doi.org/10.1109/CGI.2000.852333
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.1145/2018436.2018467
https://doi.org/10.1109/38.536275
https://doi.org/10.1080/2151237X.2006.10129253
https://doi.org/10.1145/1073204.1073241
https://doi.org/10.1111/j.1467-8659.2005.00829.x

https://doi.org/10.1145/882262.882334.

Lin, Ming C., and Stefan Gottschalk. "Collision Detection Between Geometric Models: A Survey."
Proceedings of IMA Conference on Mathematics of Surfaces, vol. 1, 1998, pp. 37-56.


https://doi.org/10.1145/882262.882334

